MICROCHIP

AN1176

USB Device Stack for PIC32 Programmer’s Guide

Author: Bud Caldwell
Microchip Technology Inc.

INTRODUCTION

The Universal Serial Bus (USB) has revolutionized the
way the world connects peripherals to personal com-
puters (PCs). It provides a simple common interface for
nearly any type of peripheral device imaginable. The
user simply plugs the peripheral into one of the com-
puter’s USB ports or into a hub connected to the com-
puter using a common connector type, installs driver
software (if the OS doesn’t already support it), and the
device is ready to use.

The flexibility and power of the USB requires managing
protocols for device identification, configuration, control
and data transfer. The Microchip PIC32 USB device
firmware stack provides an easy-to-use framework to
simplify the development of USB 2.0 compliant periph-
erals when using supported Microchip microcontroller
families.

This application note describes the Microchip PIC32
USB peripheral firmware stack and acts as a program-
mer's reference manual for developers who need to
design firmware for any type of USB peripheral device
for which no Microchip sample implementation is avail-
able. It describes how to implement a function-specific
driver that will interface with the Microchip USB periph-
eral firmware stack and shows how this simplifies the
overall application development.

ASSUMPTIONS
1. Working knowledge of C programming
language

2. Familiarity with the USB 2.0 protocol
3. Familiarity with Microchip MPLAB® IDE

FEATURES

» Supports USB peripheral device applications

* Handles standard USB device requests, as stated
in Chapter 9 of the “Universal Serial Bus Specifi-
cation, Revision 2.0” (available on the Internet at
the following URL:
http://www.usb.org/developers/docs/

» Supports an multiple number of configurations
and interfaces

» Simplifies definition of USB descriptors and con-
figuration information

» Optional support for alternate interface settings
+ Support for multi-function devices
» Event-driven system (interrupt or polled)

» Provides a simple Application Program Interface
(API)
» Provides a simple Function Driver Interface (FDI)

LIMITATIONS

» Supports 32 USB endpoints, the maximum
allowed (16 IN and 16 OUT)

» Supports up to 32 device functions

 Possible configurations limited only by available
memory

SYSTEM HARDWARE

The USB firmware stack was developed for the
following hardware:

» PIC32 microcontrollers supporting USB

© 2008 Microchip Technology Inc.

DS01176A-page 1

http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/

AN1176

PIC® MCU MEMORY RESOURCE
REQUIREMENTS

For complete program and data memory requirements,
refer to the release notes located in the installation
directory.

PIC® MCU HARDWARE RESOURCE
REQUIREMENTS

The Microchip USB device stack firmware uses the
following 1/O pins:

TABLE 1: PIC® MCU I/0 PIN USAGE

1/0 Pin Usage

D+ (I0) USB D+ differential data signal

D- (10) USB D- differential data signal

VBUS (Input) | Senses USB power (does not oper-
ate bus powered)

VUSB (Input) | Power input for the USB D+/D-

transceivers

INSTALLING SOURCE FILES

The complete device stack source is available for
download from the Microchip web site (see Appendix
D: “Source Code for the USB Device Stack Pro-
grammer’s Guide”). The source code is distributed in
a single Windows® installation file.

Perform the following steps to complete the installation:

1. Execute the installation file. A Windows installa-
tion wizard will guide you through the installation
process.

2. Before continuing with the installation, you must
accept the software license agreement by
clicking | Accept.

3. After completion of the installation process, you
should see a new entry in the “PIC32 Solutions”
program group for the PIC32 USB Device Stack.
The complete source code will be copied in the
selected directory.

4. Refer to the release notes for the latest
version-specific features and limitations.

DS01176A-page 2

© 2008 Microchip Technology Inc.

AN1176

SOURCE FILE ORGANIZATION

The Microchip USB device stack contains the following

source and header files:

TABLE 2: SOURCE FILES
File Directory* Description

usb _device.c Microchip\USB USB device layer (device abstraction and Ch 9 protocol
handling)

usb_hal.c Microchip\USB USB Hardware Abstraction Layer (HAL) interface
support

usb_hal core.c Microchip\USB USB controller functions, used by HAL interface
support

usb_device local.h |Microchip\USB Private definitions for USB device layer

usb_hal core.h Microchip\USB Private definitions for HAL controller core

usb _hal local.h Microchip\USB Private definitions for HAL

usb.h

Microchip\Include\USB

Overall USB header (includes all other USB-headers)

usb ch9.h

Microchip\Include\USB

USB device framework (Chapter 9 of the “Universal
Serial Bus Specification, Revision 2.0”) definitions

usb common.h

Microchip\Include\USB

Common USB stack definitions

usb device.h

Microchip\Include\USB

USB device layer interface definition

usb _hal.h

Microchip\Include\USB

USB HAL interface definition

usb config.h

<defined by application>

Application-specific configuration options (see
Appendix A: “USB Firmware Stack Configuration”)

*By default, the root of the installation will be
C:\PIC32 Solutions, unless another location was

chosen.

© 2008 Microchip Technology Inc.

DS01176A-page 3

AN1176

DEMO APPLICATION

The document does not refer to a demo application. It
is intended to describe how to use the USB peripheral
device stack in the cases where there are no sample
applications available that fit the desired usage. See
the “References” section for sample applications that
microchip has provided.

STACK ARCHITECTURE

The USB peripheral firmware stack can be thought of
as consisting of 4 layers, as shown in Figure 1.

FIGURE 1: CONCEPTUAL STACK

USB Peripheral Firmware Stack

Application
Function Function Function
Driver Driver Driver

Device Layer

HAL

Application

The application consists of the firmware necessary to
implement the device’s desired behavior. This is cus-
tomer designed and implemented code, although it
may be based on Microchip supplied sample code.
This code may communicate with the USB FW stack or
with any other software in the system as necessary.

Note: The USB descriptors and other configura-
tion options are application-specific. Con-
sequently, they need to be defined by the
application. The application must provide
a function that the USB firmware stack
calls to retrieve the definitions. This func-
tion must be identified in the
usb_config.h header file (see
USB_DEV_GET DESCRIPTOR_FUNC).

USB Function Driver

Every USB peripheral device implements a particular
function (printer, mouse, mass storage, etc.). Some
devices may have multiple functions. Function drivers
implement the desired function behavior and provide
function-specific control interfaces to the application.
To access the USB and transfer data and control infor-
mation, function drivers interact with the USB device
layer.

Microchip supplies function drivers for several of the
most commonly requested USB device functions. How-
ever, custom development of a specific USB function
driver (which is the topic of this document) may be
necessary.

USB Device

The device layer abstracts a USB device. It does not
make any assumptions about what function that device
may implement. Its primary job is to handle the USB
protocol elements specified in Chapter 9 of the “Univer-
sal Serial Bus Specification, Revision 2.0”. It also pro-
vides all the access to the USB that a function of any
type may need. It does this by implementing a well-
defined interface (described within this document)
used by all function drivers to access the USB. The
device layer then communicates with the HAL as nec-
essary to support this interface.

HAL

The HAL (Hardware Abstraction Layer) abstracts the
USB controller hardware. It provides access to all of the
features that the controller implements to support a
USB peripheral device.

DS01176A-page 4

© 2008 Microchip Technology Inc.

AN1176

CREATING A USB APPLICATION

This section describes the steps necessary to design
and implement a USB peripheral device application,
how to implement a function driver, and how to
integrate it with the Microchip PIC32 USB device
firmware stack.

Overview:

1. Implement the main application.

2. Implement the USB function driver.

3. Implement the application-specific USB support.
4. Configure USB stack options.

Implementing the Main Application

Using MPLAB IDE, create a new application for the
supported microcontroller. (Refer to the MPLAB IDE
online help for instructions on how to create a project.)
Implement and test any non-USB application-specific
support desired.

To support the USB FW stack, the application’s main
function must call USBInitialize, once before any
other USB activity takes place. After USBInitialize
has been called, the application must call USBTasks in
a “polling” loop (as shown in Example 1) or it must
directly link USBTasks to the processor's USB
Interrupt Service Routine (ISR).

EXAMPLE 1: MAIN APPLICATION LOGIC

// Initialize the USB stack.
USBInitialize (0);

// Main Processing Loop

while (1)

{
// Check USB for events and
// handle them appropriately.
USBHandleEvents() ;

// Perform any additional
// 10 processing needed.

The interface between the application and the function
driver is completely up to the designer of the function
driver, thus it is beyond the scope of this document.
However, it is recommended that the application imple-
ment an event routine similar to the Func-Event
Handling Routine defined by the Function Driver
Interface (FDI) to receive events from the USB stack. If
this is done, the function driver can be designed to call
the application and pass events to it similar to the way
the driver receives events from the USB stack. (See
“Implementing the USB Function Driver”.)

Notes: Code executing within the polling loop
must not block or wait on anything taking
more then a few microseconds. If blocking
behavior is required, the USB FW stack
must be used in an interrupt-based
environment.

If executed in an interrupt-based environ-
ment, the function driver's event handling
routine (and the application's, if one is
implemented) will be called in an interrupt
context.

Implementing the USB Function Driver

The purpose of the USB function driver is to implement
the features of the class-or-vendor-specific USB func-
tion. The function driver must interface with the FDI
routines to transfer data on the USB and to receive
notification of events that occur on the bus.

Initialization

The function driver is initialized by the USB stack when
the device configuration has been selected by the host.
In order for this to happen, the driver must implement
an initialization routine with a specific C-language-func-
tion signature. This routine is called via a pointer in the
“Function Driver Table”.

The purpose of the initialization routine (see
Example 2) is to reset and initialize the state of the
function driver and prepare for any function-specific
activity on the bus.

EXAMPLE 2: INITIALIZATION ROUTINE

BOOL USBGenInitialize (unsigned long flags
{

// Initialize the driver state

memset (&gGenFunc, sizeof (gGenFunc), O0);

// Set initialized flag!
gGenFunc.flags =
GEN_ FUNC FLAG INITIALIZED;

return TRUE;

Notice that all the example routine does is initialize the
data structure that maintains the function’s state
(gGenFunc). Actual initialization of the endpoint hard-
ware is handled by the USB FW stack, based on an
application-specific configuration table.

© 2008 Microchip Technology Inc.

DS01176A-page 5

AN1176

Event Handling

The other thing that a function driver must do is handle
device-or-function-specific events that occur on the
USB. To do this, it must implement an event-handling
routine with a specific C language function signature.
This routine is called by a lower level of the USB stack
using a pointer in the Function Driver Table.

The purpose of the event-handling routine is to respond
to the appropriate events and provide the required
behavior. Events are defined by the USB_EVENT enu-
merated data type found in the in the usb_common.h
header file. The function driver’s event-handling routine
must perform the correct action to support the desired
function behavior. Exactly what action must be taken
for each event is function-specific and beyond the
scope of this document. The function-driver designer
must have detailed knowledge of the required behavior
for the desired USB peripheral function in order to
implement a driver for it.

EXAMPLE 3: EVENT-HANDLING ROUTINE

Example 3 shows when the function driver should call
the USBDEVGetLastError FDI routine. This routine
must be called when an EVENT BUS_ERROR event is
“thrown” to the function driver by the stack to clear error
indication bits. Most of these events will be handled
directly by the stack itself. However, if it is not handled
by the stack, the function driver may need to take
error-specific and function-specific action.

The other thing that most function drivers will need to
do is transfer data across the USB. This is done by call-
ing the USBDEVTransferData FDI routine. The usual
reason to call this routine is when a function-specific
request has been received, indicated by an
EVENT TRANSFER event, and it has been decoded as
a function-specific request to transfer data. The event-
handling logic of the driver may then need to call the
USBDEVTransferData routine to satisfy the request.
For an example of how to use these FDI functions, see
their descriptions in Appendix C: “USB Function
Driver Interface”.

{

unsigned long error;
// Abort if not initialized.

return FALSE;
}

// Handle specific events.

switch (event)

{

case EVENT TRANSFER:

case EVENT DETACH:
gGenFunc.flags = 0;
gGenFunc.rx size = 0;
return TRUE;

error = USBDEVGetLastError () ;

return TRUE;

default:
return FALSE;

// Unknown event

}

BOOL USBGenEventHandler (USB EVENT event, void *data, unsigned int size)

if (!(gGenFunc.flags & GEN_FUNC_ FLAG INITIALIZED)) {

// A USB transfer has completed.
return HandleTransferDone ((USB_XFER EVT DATA *)data);

// USB cable has been detached
// De-initialize the general function driver.

case EVENT BUS ERROR: // Error on the bus

// Should capture the error and do something about it.

// Handle any other events required by the application or function.

Notes: Code executed within the context of the event-handling routine must not block.

DS01176A-page 6

© 2008 Microchip Technology Inc.

AN1176

Implementing the Application-Specific
USB Support

In order to integrate one or more function drivers with
the USB FW stack and to configure the stack for the
application, the user must define three tables and
implement functions (or macros) to provide the USB
device stack with access to them.

Application-Specific USB Tables:

1. USB Descriptor Table

2. Endpoint Configuration Table

3. Supported-Function-Drivers Table

All three tables are interrelated. Together, they identify
the features, endpoint configurations, and functions

that are supported by the USB stack and the device
itself.

The requirements for the USB descriptors are defined
in the “Universal Serial Bus Specification 2.0” and in
the class-specific supplements for practically any class

FIGURE 2:

of device that the user might want to design. Section
“Implementing the USB Descriptor Table” describes
a method for implementing these descriptors and pro-
viding the USB FW stack with access to them.

The endpoint configuration and function driver tables
allow the application to support a device with any
number of endpoint configurations and practically any
number of USB peripheral device functions. The end-
point configuration table identifies which function driver
should receive events for each endpoint (for each con-
figuration, interface, and alternate interface setting). A
graphical depiction of the function driver table is shown
in Figure 2. The arrows show the relation ship between
the entries in the endpoint configuration table and the
function driver table.

The following sub-sections describe these tables in
detail and show how to implement them, and their
access routines.

ENDPOINT CONFIGURATION AND FUNCTION DRIVER TABLES

Config. Intf # Alt

inti# | EP ¥

EP Config. Data

Function
Driver
Table

Func. #

o

Tx, HndShk

Rx, HndShk

HID

Tx, HndShk

Tx, HndShk

Rx, HndShk

Audio

Rx, HndShk

Tx

Rx

Bulk

Rx

Tx, HndShk

Rx, HndShk

NINIDN | alalal=a = -

Ol oo Al Al AalAalalalO|l O] O

O|OoO|O|—~|~|_|lO|lOC|OC|O| O

WIN|[2|O([N|O|[O|N|O|W|N|~

Tx, HndShk

O|O(O|IN|IN| N2~ O|lO|OC
N

© 2008 Microchip Technology Inc.

DS01176A-page 7

AN1176

IMPLEMENTING THE USB DESCRIPTOR
TABLE

Every USB device must be able to provide a set of
descriptors (data structures), describing the device and
providing details to the host about how to use it. Exactly
how these descriptors must be provided and what infor-
mation they must contain is defined in Chapter 9 of the
“Universal Serial Bus Specification, Revision 2.0” and
its class-specific supplements. Please refer to these
documents for full details. In the Microchip USB stack,
these descriptors are created using data types defined
in the usb_ch9.h header file.

EXAMPLE 4:

DESCRIPTOR TABLE DEFINITION

The descriptors for a USB device can be thought of as
belonging to one of three different groups: those
describing the overall device, those describing possible
device configurations, and those providing user-read-
able information. Each USB device has one and only
one device descriptor, to uniquely identify the device
and give the number of possible configurations. Each
configuration has its own set of descriptors describing
the details of that configuration. There may also be any
number of user-readable “string” descriptors.

Example 4 shows an example of how a USB descriptor
table might be defined using the provided type
definitions for the USB descriptors.

#define NUM_LANGS 1
#define LANG_1_ID 0x0409
#define STR 1 LEN 25
#define STR_2_LEN 27
#define STR_3_LEN 10

typedef struct configl descriptors
{
USB CONFIGURATION DESCRIPTOR
USB_INTERFACE_DESCRIPTOR
USB_ENDPOINT DESCRIPTOR
USB _ENDPOINT DESCRIPTOR
} CONFIGl DESC, *PCONFIGl DESC;

typedef struct string0 descriptor
{

} STRO DESC, *PSTR DESC;

typedef struct stringl descriptor
{

} STR1 DESC, *PSTR1 DESC;

typedef struct string2 descriptor
{

} STR2 DESC, *PSTR2 DESC;

typedef struct string3 descriptor
{

} STR3 DESC, *PSTR3 DESC;

cfg desc;
intf0_desc;
intf0_epl in desc;
intf0 epl out desc;

USB_STRING_DESCRIPTOR string;
WORD langid[NUM LANGS];

USB_STRING_DESCRIPTOR string;
WORD string data[STR 1 LEN];

USB_STRING_DESCRIPTOR string;
WORD string data[STR 2 LEN];

USB_STRING_DESCRIPTOR string;
WORD string data[STR 3 LEN];

// English

// Configuration 1
// Config 1, Interface 0
// Endpoint 0 in (Tx)
// Endpoint 0 out (Rx)

// String0 Descriptor

// Stringl Descriptor

// String2 Descriptor

// String3 Descriptor

Note: There is no endpoint descriptor for Endpoint zero (0). The “Universal Serial Bus Specification, Revision 2.0”
explicitly defines the behavior of Endpoint zero. Only the packet size is configurable.

DS01176A-page 8

© 2008 Microchip Technology Inc.

AN1176

The “device” descriptor (which uses the standard defi-
nition provided in usb_ch9.h) can be provided alone.
The Configuration descriptors (cfg_desc,
intf0 desc, intf0 _epl in desc, and
intf0_epl out desc)mustbe provided together as
a contiguous set. The host will request the specific
amount of data it wishes to receive along with a zero-
based index indicating which configuration-descriptor
set it wishes to receive. String descriptors will also be
requested by index (string 0, string 1, etc.) as well as by
language ID.

structures.

Note: The string descriptor consists of both the
USB_STRING DESCRIPTOR structure
and the WORD array of string data, stored
contiguously in memory.

Descriptor data, which must be
contiguous, should be placed in packed

Using the descriptor table definition shown in
Example 4, an example of how to initialize it is shown

in Example 5.

EXAMPLE 5: DESCRIPTOR TABLE INITIALIZATION

USB_DEVICE DESCRIPTOR dev desc =
{

sizeof (USB_DEVICE DESCRIPTOR), // Size of this descriptor in bytes
USB_DESCRIPTOR_DEVICE, // DEVICE descriptor type
0x0200, // USB Spec Release Number in BCD format
0x00, // Class Code
0x00, // Subclass code
0x00, // Protocol code
USB_DEV_EPO MAX PACKET SIZE, // Max packet size for EPO, see usbcfg.h
0x04D8, // Vendor ID
0x000C, // Product ID: PICDEM FS USB (DEMO Mode)
0x0000, // Device release number in BCD format
0x01, // Manufacturer string index
0x02, // Product string index
0x00, // Device serial number string index
0x01 // Number of possible configurations

}i

CONFIG1_DESC configl =

{
{ /* Configuration Descriptor */

sizeof(USB_CONFIGURATION_DESCRIPTOR),
USB DESCRIPTOR CONFIGURATION,
sizeof(CONFIGliDESC),

1,

USBGEN_CONFIG NUM,

OI

0x01<<7,

50

{ /* Interface Descriptor */
SiZeOf(USBiINTERFACEiDESCRIPTOR),
USB_DESCRIPTOR INTERFACE,
USBGEN_INTF_NUM,
OI
2,
0x00,
0x00,
0x00,
0
by
/* Endpoint Descriptors */
{ /* EP 1 - Out */
Sizeof(USB_ENDPOINT_DESCRIPTOR),
USB DESCRIPTOR ENDPOINT,
{EP_DIR_OUT|USBGEN_EP_NUM},
{EP_ATTR_INTR},
EP MAX PKT INTR_FS,
32

//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//

Size of this descriptor in bytes
CONFIGURATION descriptor type
Total length of data for this cfg
Number of interfaces in this cfg
Index value of this configuration
Configuration string index
Attributes, see usbdefs std dsc.h
Max power consumption (2X mA)

Size of this descriptor in bytes
INTERFACE descriptor type
Interface Number

Alternate Setting Number

Number of endpoints in this intf
Class code

Subclass code

Protocol code

Interface string index

© 2008 Microchip Technology Inc.

DS01176A-page 9

AN1176

{ /*EP1 - In */
sizeof (USB_ENDPOINT DESCRIPTOR),
USB_DESCRIPTOR ENDPOINT,
{EP_DIR IN|USBGEN EP NUM},
{EP_ATTR INTR},
EP_MAX PKT INTR FS,
32

}i

STRO_DESC string0 =
{

{ // Language ID: English
sizeof (STRO DESC),
USB_DESCRIPTOR_ STRING

}I

{LANG 1 _ID}

}i

STR1 DESC stringl =
{
{ // Vendor Description
sizeof (STR1 DESC),
USB_DESCRIPTOR_ STRING
}I
{lMl,lil,lcY,YrY,YOY,YCY,YhY,YiY,YpY,Y Y,
'T','e','C','h','n','O','l','O','g','y',' l,
IIIIIHIIICY,Y.Y}

}i

STR2 DESC string2 =
{
{ // Device Description
sizeof (STR2 DESC),
USB DESCRIPTOR_ STRING
I
{'p','1','cr,'3"', 2", v, rpr, 1", 'c','n','E','™"'," ',
'‘D','e','m','0"," ', 'E','m',"u','1','a','t',"'i"'",'o', 'n"}

}i

STR3_DESC string3 =
{
{ // Serial Number
sizeof (STR3 DESC),
USB_DESCRIPTOR_ STRING
}I
{o','0','o0','o0','0','0"','0','0",'0",'0"}
}i

Along with the necessary set of descriptors, the application must also provide a routine to access them. Example 6
shows an implementation of this routine. It must have the C-language-function signature described by the USB APT -
USB_DEV_GET_DESCRIPTOR_ FUNC definition of “Application Programming Interface”.

DS01176A-page 10 © 2008 Microchip Technology Inc.

AN1176

EXAMPLE 6: GET DESCRIPTOR ROUTINE AND SUPPORT CODE

static inline const void *GetConfigurationDescriptor(BYTE config, unsigned int *length)
{
switch (config)
{
case 0: // Configuration 1 (default)
*length = sizeof (configl);

return &configl;

default:
return NULL;

} // GetConfigurationDescriptor

static inline const void *GetStringDescriptor(PDESC_ID desc, unsigned int *length)
{
// Check language ID
if (desc->lang id != LANG 1 ID) {
return NULL;

// Get requested string
switch (desc->index)
{
case 0: // String 0
*length = sizeof (string0);
return &string0;

case 1: // String 1
*length = sizeof (stringl);
return &stringl;

case 2: // String 2
*length = sizeof (string2);
return &string?2;

case 3: // String 3
*length = sizeof (string3);
return &string3;

default:
return NULL;

} // GetStringDescriptor

const void *USBDEVGetDescriptor (PDESC ID desc, unsigned int *length)
{
switch (desc->type)
{
case USB _DESCRIPTOR DEVICE: // Device Descriptor
*length = sizeof (dev _desc);
return &dev desc;

case USB_DESCRIPTOR CONFIGURATION:// Configuration Descriptor
return GetConfigurationDescriptor (desc->index, length);

case USB _DESCRIPTOR STRING: // String Descriptor
return GetStringDescriptor (desc, length);

© 2008 Microchip Technology Inc. DS01176A-page 11

AN1176

// Fail all un-supported descriptor requests:

default:

}

return NULL;

} // USBDEVGetDescriptor

Note:

In Example 6, the USBDEVGetDescriptor routine is implemented using the inline helper functions
GetStringDescriptor and GetConfigurationDescriptor to make the code more readable with-
out incurring the overhead of a function call.

DS01176A-page 12 © 2008 Microchip Technology Inc.

AN1176

IMPLEMENTING THE ENDPOINT
CONFIGURATION TABLE

The endpoint configuration table identifies direction
and protocol features for every endpoint required by
each interface or alternate setting for every supported
configuration of the USB device. The table also identi-
fies which function driver will be used to service events
that occur related to each endpoint. The only exception
is that Endpoint zero (0) is configured automatically by
the stack and is not included in the endpoint
configuration table.

The EP_CONFIG structure and flags are defined in the
usb_device.h header file.

Each entry in the table is made up of the following data
structure:
FIGURE 3: ENDPOINT
CONFIGURATION TABLE
STRUCTURE

TABLE 3: ENDPOINT CONFIGURATION

FLAGS

Flag Description

USB_EP_ TRANSMIT |Enable endpoint for
transmitting data

USB_EP RECEIVE Enable endpoint for

receiving data

USB_EP_ HANDSHAKE | Enable generation of hand-
shaking (ACK/NAK) packets
(non-isochronous endpoints

only)

USB_EP NO_INC Used only for direct DMA to

another device's FIFO

typedef struct

{
UINT16 max pkt size;
UINT16 flags;

BYTE config;
BYTE ep_num;
BYTE intf;
BYTE alt_intf;
BYTE function;

} EP_CONFIG, *PEP CONFIG;

The max_pkt size field defines how many bytes this
endpoint can transfer in a single packet. The ep _num
field identifies which endpoint the structure describes.
The config, intf, and alt intf fields identify
which device configuration, interface and alternate
interface setting that this structure describes. The
function field identifies which function driver uses
the endpoint identified by ep num. It does this by pro-
viding the index into the “Supported-Function-Drivers
Table”, as illustrated by the arrows in Figure 2. The
flags field provides the information used to configure
the behavior of the endpoint. The flags are described in
Table 3.

TERMINOLOGY

The terminology can be confusing when discussing the
direction of data flow on the bus.

The USB specification uses the term OUT to refer to
data flow from the host (PC) to the device (peripheral)
and the term IN to refer to data flow from the device to
the host.

Since the USB interface on the microcontroller may
also support USB host functionality, the Microchip
PIC32 USB stack uses the term TRANSMIT to refer to
data flowing out of the microcontroller (onto the bus)
and the term RECEIVE to refer to data flowing from the
USB into the microcontroller. To help clarify, the follow-
ing table summarizes the relationship between these
terms.

TABLE 4: DATA FLOW DIRECTION
SUMMARY FOR A

PERIPHERAL DEVICE

uUsB FW Stack

Term Term Description

IN TRANSMIT |Data flows from the device to
the host.

ouT RECEIVE |Data flows from the host to the
device.

© 2008 Microchip Technology Inc.

DS01176A-page 13

AN1176

Simple Example

The following code snippet provides an example of how
to initialize the endpoint configuration table in a way
that is consistent with the descriptor table shown in
Example 4 (see “Implementing the USB Descriptor
Table”). It is vital that the information reported to the
host in the descriptor table match with the information
provided in the endpoint configuration table that is used
to configure the hardware.

EXAMPLE 7: SIMPLE ENDPOINT CONFIGURATION TABLE

const EP CONFIG gEpConfigTable[] =
{
{ // EP1 - In & Out

USB EP RECEIV

USB_EP HANDSHAKE,

USBGEN_EP_NUM, // Endpoint number.

USBGEN CONFIG NUM, // Configuration number
USBGEN_INTF_ NUM, // Interface number

0, // Alternate interface setting

0 // Index in device function table

EP_MAX PKT_INTR_FS, // Maximum packet size for this endpoint
USB_EP TRANSMIT | // Configuration flags for this endpoint

(see below)

Complex Example

A more complex device might have multiple configura-
tions, or multiple interfaces, within a configuration.
Example 8 presents an endpoint configuration table
that could be for a device that has two configurations.
Configuration 1 has two interfaces (0 and 1). Each
interface has two endpoints, one for transmitting data,
and one for receiving it. Configuration 2 has one inter-
face with two endpoints; again, one for transmitting
data and one for receiving it.

DS01176A-page 14

© 2008 Microchip Technology Inc.

AN1176

EXAMPLE 8: COMPLEX ENDPOINT CONFIGURATION TABLE

const EP_CONFIG gEpConfigTable[] =
{
// Device Configuration 1 Endpoint Configurations.

{

64, // Maximum packet size for this endpoint
USB_EP TRANSMIT | // Configuration flags for this endpoint
USB_EP HANDSHAKE,

1, // Endpoint number.

1, // Configuration number (starts at 1)

0, // Interface number

0, // Alternate interface setting (default=0)
0 // Index in device function table

64, // Maximum packet size for this endpoint
USB_EP RECEIVE| // Configuration flags for this endpoint
USB_EP HANDSHAKE,

2, // Endpoint number.

1, // Configuration number (starts at 1)

0, // Interface number

0, // Alternate interface setting (default=0)
0 // Index in device function table

64, // Maximum packet size for this endpoint
USB_EP TRANSMIT | // Configuration flags for this endpoint
USB_EP HANDSHAKE,

3, // Endpoint number.

1, // Configuration number (starts at 1)

1, // Interface number

0, // Alternate interface setting (default=0)
0 // Index in device function table

64, // Maximum packet size for this endpoint

USB_EP RECEIVE | // Configuration flags for this endpoint (see below)
USB_EP HANDSHAKE,

4, // Endpoint number.

1, // Configuration number (starts at 1)

1, // Interface number

0, // Alternate interface setting (default=0)

0 // Index in device function table

by
// Device Configuration 2 Endpoint Configurations.

{

64, // Maximum packet size for this endpoint
USB_EP TRANSMIT | // Configuration flags for this endpoint
USB_EP HANDSHAKE,

1, // Endpoint number.

2, // Configuration number (starts at 1)

0, // Interface number

0, // Alternate interface setting (default=0)
0 // Index in device function table

64, // Maximum packet size for this endpoint
USB_EP RECEIVE| // Configuration flags for this endpoint
USB_EP HANDSHAKE,

2, // Endpoint number.

2, // Configuration number (starts at 1)

0, // Interface number

0, // Alternate interface setting (default=0)
0 // Index in device function table

© 2008 Microchip Technology Inc. DS01176A-page 15

AN1176

IMPLEMENTING THE SUPPORTED
FUNCTION DRIVERS TABLE

Since a device may implement more then one class-or-
vendor specific USB function, the Microchip PIC32
USB FW stack uses a table to manage access to sup-
ported function drivers. Each entry in the table contains
the information necessary to manage a single function
driver. If a device only implements one USB function,
the table will only contain one entry. The following data
structure defines an entry in the function-driver table.

FIGURE 4: FUNCTION DRIVER TABLE ENTRY

struct _function driver table_ entry

{

USBDEV_INIT FUNCTION DRIVER Initialize; // Init routine
USB_EVENT HANDLER EventHandler; // Event routine
BYTE flags; // Init flags

}i

The Initialize field holds a pointer to the function
driver’s initialization routine. The EventHandler field
holds a pointer to the function driver’s routine for han-
dling vender-or-class-specific USB events. The flags
field contains any driver-specific flags that will be
passed into the initialization routine. Refer to “Imple-
menting the USB Function Driver” for details on
what these routines do and how to implement them.

The data in these three fields is all that is required to for
the USB stack to manage the function driver. The table
entry allows the USB stack to dynamically choose
which function driver is called once the host has config-
ured the device. The function driver itself can directly
link to the USBDEVTransferData and USBDEVGet-
LastError routines, using the normal method since
there is only one implementation for each of these
routines in the USB stack. Example 9 shows a sample
implementation.

EXAMPLE 9: FUNCTION DRIVER TABLE

const FUNC DRV gDevFuncTable[2] =
{

{ // General Function Driver
USBGenInitialize, // Init routine
USBGenEventHandler, // Event routine
2 // Endpoint Number (bottom 4 bits)

{ // HID function Driver

USBHIDInitialize, // Init routine
USBHIDEventHandler, // Event routine
0 // No flags supported

DS01176A-page 16 © 2008 Microchip Technology Inc.

AN1176

In addition to the table, the application must implement
a routine or macro to provide the base address of the

The routine only needs to provide a pointer to the base
of the table. No information is needed regarding the
number of entries in the table since the endpoint con-
figuration table provides the indices of every possible
entry in the function driver table (see “Implementing
the Endpoint Configuration Table”).

table. Example 10 shows how this might be
implemented.
EXAMPLE 10: GET FUNCTION DRIVER TABLE ROUTINE

const FUNC_DRV *USBDEVGetFunctionDriverTable
{

return gDevFuncTable;

}

(

void)

Configuring the USB Stack Options

This section highlights several key configuration
options necessary to ensure proper operation of the
USB peripheral device stack.

First, to ensure that the USB stack is built for Periph-
eral-Device-Only mode, be sure to define the
USB_SUPPORT_DEVICE macro. Otherwise, the behav-
ior of the USB stack will not be appropriate for a USB
peripheral device application. Second, to ensure that
the USB stack does not allocate any more RAM then is
required, be sure to define the following macros cor-
rectly:

Macros Directly Effecting RAM Usage:

+ USB_DEV HIGHEST EP NUMBER

* USB_MAX NUM PIPES

+ USB_DEV EP0 MAX PACKET SIZE

* USB_DEV_SUPPORTS_ALT_ INTERFACES

The first three of these macros must be defined as an
appropriate integer, as required for the device’s appli-
cation. RAM is allocated to track state information for
each endpoint used, from Endpoint zero (0) up to the
highest endpoint number used. So, one way to con-
serve RAM is to allocate the endpoints required from
the lowest numbers available. To indicate this to the
USB stack, define the
USB_DEV_HIGHEST EP NUMBER macro to be equal
to this number.

EXAMPLE 11:

Endpoint zero (0) can support buffer sizes of 8, 16, 32,
or 64 bytes. The RAM for the this buffer is allocated
based upon how the
USB_DEV_EPO_MAX PACKET_ SIZE macro is defined.
It must be defined to equal one of these values.

If support for alternate interfaces is required, the macro
USB_DEV_SUPPORTS ALT INTERFACES must be
defined. Otherwise, the USB stack will not support the
use of USB interfaces with alternate settings. This sup-
port is not always required, and including it will use
additional RAM and Flash (see “PIC® MCU Memory
Resource Requirements”).

Third, to ensure that the USB stack can call the three
user-defined routines described in “Implementing the
Application-Specific UsSB Support”, the
USB_DEV_GET_DESCRIPTOR FUNC,
USB_DEV_GET_EP CONFIG_TABLE FUNC, and
USB_DEV_GET FUNCTION DRIVER TABLE FUNC
macros must be defined to equal the names of their
associated routines. The following example shows how
these macros would be defined using the example
routines shown in “Implementing the Application-
Specific USB Support”.

FUNCTION IDENTIFICATION MACRO DEFINITIONS

#define USB DEV GET DESCRIPTOR FUNC
#define USB DEV_GET EP CONFIG TABLE FUNC

USBDEVGetDescriptor
USBDEVGetEpConfigurationTable
#define USB DEV_ GET FUNCTION DRIVER TABLE FUNC USBDEVGetFunctionDriverTable

Note:

See Appendix A: “USB Firmware Stack Configuration” for additional details on configuration options.

© 2008 Microchip Technology Inc.

DS01176A-page 17

AN1176

CONCLUSION

The Microchip PIC32 USB peripheral firmware stack
makes it easy for a developer to manage USB device
identification, configuration, control and data transfer.
The stack simplifies support for practically any number
of configurations or interfaces. Most importantly, it pro-
vides a simple function-driver interface that makes it
easy to design a single or multi-function device.

REFERENCES

» “Universal Serial Bus Specification, Revision 2.0”
http://www.usb.org/developers/docs

* “OTG Supplement, Revision 1.3
http://www.usb.org/developers/onthego

« Microchip MPLAB® IDE
In-circuit development environment, available free
of charge, by license, from www.microchip.com/
mplabide

» Microchip Application Note AN1163, “USB HID
Class on an Embedded Device”

+ Microchip Application Note AN1169, “USB Mass
Storage Class on an Embedded Device”

» Microchip Application Note AN1164, “USB CDC
Class on an Embedded Device”

» Microchip Application Note AN1166, “USB
Generic Function on an Embedded Device”

DS01176A-page 18

© 2008 Microchip Technology Inc.

http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/

AN1176

APPENDIX A: USB FIRMWARE
STACK
CONFIGURATION

The peripheral stack provides several configuration
options to customize it for your application. The config-
uration options must be defined in the file
usb_config.h that must be implemented as part of
any USB application. Once any option is changed, the
stack must be built “clean” to rebuild all related binary
files.

The following is a list of peripheral stack configuration
options:

+ USB_SUPPORT DEVICE

+ USB_DEV_EVENT HANDLER

« USB_DEV_HIGHEST EP NUMBER

* USB_DEV_EPO_ MAX PACKET SIZE

e USB_DEV_SUPPORTS ALT INTERFACES

* USB_DEV_GET DESCRIPTOR_FUNC

+ USB_DEV_GET EP CONFIG TABLE FUNC

+ USB_DEV_GET_ FUNCTION DRIVER TABLE FUNC
+ USB_DEV_SELF_ POWERED

* USB_DEV_SUPPORT_ REMOTE WAKEUP

* USB_SAFE MODE

© 2008 Microchip Technology Inc.

DS01176A-page 19

AN1176

USB_SUPPORT_DEVICE

Purpose

Precondition
Valid Values

Default:
Example

This macro determines that the application being implemented supports peripheral device
operation.

None

This macro does not need to have a value assigned to it. Defining it is sufficient to select the USB
role of the application.

Not defined
#define USB_SUPPORT DEVICE

USB_DEV_EVENT HANDLER

Purpose

Precondition
Valid Values

Default:
Example

This macro identifies the name of the bus-event-handling routine for the device support layer of
the USB stack. The device support layer handles all standard (Chapter 9 of the “Universal Serial
Bus Specification, Revision 2.0”) requests. The macro should always be defined as shown in the
example unless the user wishes to handle standard device requests directly.

None

This macro needs to be equal to the name of a routine capable of handling all USB device
requests.

USBDEVHandleBusEvent

#define USB DEV EVENT HANDLER USBDEVHandleBusEvent

USB_DEV_HIGHEST EP_ NUMBER

Purpose

Precondition
Valid Values
Default:

Example

This macro determines the highest endpoint number to be used by the application.

Note: The USB peripheral SW stack will use additional RAM on a per-endpoint basis to
manage data transfer (see “PIC® MCU Memory Resource Requirements”).

None

Valid values are any integer between 1 and 15.
None — must be defined by application
#define USB DEV HIGHEST EP NUMBER1S5

USB_DEV_EPO_MAX PACKET SIZE

Purpose

Precondition
Valid Values
Default:
Example

This macro defines the maximum packet size allowed for Endpoint 0.

Note: The USB peripheral SW stack will use additional bytes of RAM equal to the definition
of this macro (see “PIC® MCU Memory Resource Requirements”).

None

This macro must be defined as 8, 16, 32, or 64 bytes
8

#define USB_DEV_EPO MAX PACKET SIZES

DS01176A-page 20

© 2008 Microchip Technology Inc.

AN1176

USB_DEV_SUPPORTS_ALT INTERFACES

Purpose

Precondition
Valid Values

Default:

Example

When this macro is defined, the USB device FW stack includes support for alternate interfaces
within a single configuration.

Note: The USB device FW stack will use additional Flash and RAM to manage alternate
interfaces when this macro is defined (see “PIC® MCU Memory Resource
Requirements”).

None

This macro does not need to have a value assigned to it. Defining it is sufficient to enable support
for alternate interfaces

Not defined
#define USB DEV_SUPPORTS_ ALT INTERFACES

USB_DEV_GET_DESCRIPTOR FUNC

Purpose

Precondition

Valid Values

Default:
Example

This macro defines the name of the routine that provides the descriptors to the USB FW stack.
This routine must be implemented by the application. The signature of the function must match
that defined in the usb_device.h header.

None

This macro must be defined to equal the name of the application’s “get descriptor” routine to sup-
port USB peripheral device operation.

None — must be defined by application
#define USB DEV GET DESCRIPTOR FUNC USBDEVGetDescriptor

USB_DEV_GET_EP_CONFIG_TABLE_FUNC

Purpose

Precondition

Valid Values

Default:
Example

This macro defines the name of the routine that provides a pointer to the endpoint configuration
table used to configure endpoints as desired. The signature of the function must match the one
defined in usb_device.h.

None

This macro must be defined to equal the name of the application’s “get endpoint configuration
table” routine to support USB peripheral device operation.

None — must be defined by application
#define USB DEV GET EP CONFIG TABLE FUNC USBDEVGetEpConfigurationTable

USB_DEV_GET FUNCTION DRIVER TABLE FUNC

Purpose

Precondition
Valid Values

Default:

Example

This macro defines the name of the routine that provides the pointer to the function driver table.
The signature of the function must match the one defined in usb_device.h.

None

This macro must be defined to equal the name of the application’s “get function driver table”
routine to support USB peripheral device operation.

None — must be defined by application
#define USB DEV_GET FUNCTION DRIVER TABLE FUNC \
USBDEVGetFunctionDriverTable

© 2008 Microchip Technology Inc. DS01176A-page 21

AN1176

USB_DEV_SELF_POWERED

Purpose This should be defined if the system acts as a self powered USB peripheral device.

Note: Must match the information provided in the descriptors.

Precondition None

Valid Values This macro does not need to have a value assigned to it. Defining it is sufficient to enable support
for self powered devices in the USB peripheral SW stack.

Default: Not defined

Example #define USB DEV_SELF POWERED

USB_DEV_SUPPORT REMOTE WAKEUP
Purpose This should be defined if the system is to support remotely waking up a host.
Precondition None

Valid Values This macro does not need to have a value assigned to it. Defining it is sufficient to enable support
for remote wake-up.

Default: Not defined
Example #define USB DEV_SUPPORT REMOTE WAKEUP

USB_SAFE_MODE

Purpose Define this macro to enable parameter and bounds checking in various places throughout the
USB SW stack.

Note: This feature can be removed for efficiency by not defining this label once careful test-
ing and debugging have been done.

Precondition None

Valid Values This macro does not need to have a value assigned to it. Defining it is sufficient to enable safe

mode.
Default: Not defined
Example #define USB_SAFE MODE

DS01176A-page 22 © 2008 Microchip Technology Inc.

AN1176

APPENDIX B: APPLICATION
PROGRAMMING
INTERFACE

This section describes the Application Programming
Interface (API) to the USB device firmware stack. This
API is used by the application to initialize and maintain
the USB firmware stack. It also provides application-
specific configuration information such as device
descriptors, endpoint configurations, and access to
function drivers.

Some of these API routines are implemented by the
USB firmware stack and are called directly by the appli-
cation. Others are commonly referred to as “callouts”
(or more correctly, “calls out”). These functions must be
implemented by the application and are called “OUT” of
the USB firmware stack into the application. In order for
the USB firmware stack to know which routines to call,
the function names of the “callout” routines must be
identified during configuration of the stack. Refer to the
USB_DEV_GET DESCRIPTOR_FUNC,

USB_DEV_GET EP CONFIG_TABLE FUNC, and
_DEV_GET FUNCTION DRIVER TABLE FUNC mac-
ros in the “USB Firmware Stack Configuration”
section to see how these routines are identified.

Table 5 summarizes the API and identifies which
routines are call IN routines and which ones are call
OUT routines.

TABLE 5: USB APl SUMMARY
Operation 1% ?DIL Description

USBInitialize IN Initializes the USB firmware stack.

USBHandleEvents IN Identifies and handles bus events.

USB_DEV_GET DESCRIPTOR FUNC ouUT |This function must be implemented by the application
to provide a pointer to the requested descriptor.

USB_DEV_GET_EP_CONFIG_ TABLE_ FUNC OUT |This function must be implemented by the application
to provide a pointer to the endpoint configuration table.

USB_DEV_GET_FUNCTION DRIVER TABLE FUNC| OUT |This function must be implemented by the application

to provide a pointer to the function driver table.

Detailed descriptions of the API routines follow.

© 2008 Microchip Technology Inc.

DS01176A-page 23

AN1176

USB API - USBInitialize

This function performs initialization of the USB firmware stack, clears the USB state and attempts to connect to the
bus.

Syntax
BOOL USBInitialize (unsigned long flags)

Parameters

flags — USB Initialization Flags (reserved, pass zero)

Return Values
TRUE if successful,
FALSE if not
Preconditions
None

Side Effects
The USB peripheral firmware stack has been initialized and the system is waiting for a connection on the bus.

Example

// Initialize the USB stack.
if (!USBInitialize(0)
return FALSE;

Note: This “function” may actually be implemented as a macro that calls more than one actual function to
initialize multiple USB FW layers, depending on the current configuration of the USB stack.

DS01176A-page 24 © 2008 Microchip Technology Inc.

AN1176

USB API - USBTasks

This is the main USB state machine event “pump” routine. It checks for USB events that may have occurred and
handles them appropriately. It may be called by the application in a polling loop or it may be called directly in
response to the USB (or possibly a timer) interrupt.

Syntax

void USBTasks (void)

Parameters

None

Return Values

None

Preconditions

USBInitialize must have been called and returned a success indication.

Side Effects

Side effects will vary greatly, depending on the state of the USB peripheral firmware and activity on the bus. This
routine will identify the bus event that has occurred and take appropriate action if it can. If the USB peripheral firm-
ware cannot directly handle the event, then calling this routine will result in a “call out” to one or more function driv-
ers to handle class and vendor specific events. The function driver may then call out to the application, depending
on its design.

Example

// Main Processing Loop

while (1)

{
// Check USB for events and
// handle them appropriately.
USBHandleEvents () ;

// Handle other IO activity.

Note: This “function” may actually be implemented as a macro that calls more than one actual function to
maintain multiple USB FW layers, depending on the current configuration of the USB stack.

© 2008 Microchip Technology Inc. DS01176A-page 25

AN1176

USB API - USB DEV_GET DESCRIPTOR_FUNC

This routine is a “call out” from the USB firmware that must be implemented by the application. The actual name is
defined by the application. The device layer will call it using the USB_ DEV_GET DESCRIPTOR_FUNC macro (see
“USB Firmware Stack Configuration”), which must be defined to equal the routine’s actual name. The routine
will be called in response to a GET DESCRIPTOR request from the host. It must provide a pointer to and length of
the indicated descriptor(s).

Syntax

const void * USB_DEV_GET DESCRIPTOR FUNC (BYTE type, BYTE index, unsigned int *length)

Where USB_DEV_GET DESCRIPTOR FUNC is an application-defined function name

Parameters
type — Identifies the type of descriptor requested.
index — Index of the desired descriptor.

length — Pointer to the variable that will receive the length of the requested descriptor.

Return Values

Returns a pointer to the requested descriptor(s)

Preconditions

USBInitialize must have been called and returned a success indication.

Side Effects
None

Example

// This is a sample implementation. This routine is not called by the application.
const void *USBDEVGetDescriptor (BYTE type, BYTE index, unsigned int *length)
{
switch (type)
{
case USB DESCRIPTOR DEVICE: // Device Descriptor
*length = sizeof (dev _desc);
return &dev desc;

case USB DESCRIPTOR CONFIGURATION:// Configuration Descriptor
*length = sizeof (conf desc);
return &conf desc;

// Handle other descriptors as needed.

}
return NULL;

DS01176A-page 26 © 2008 Microchip Technology Inc.

AN1176

USB API - USB DEV_GET EP_CONFIG_TABLE_FUNC

This routine is a “call out” from the device layer that must be implemented by the application. Since the routine’s
name is defined by the application, the USB firmware wil call it using the
USB_DEV_GET EP CONFIG TABLE FUNC macro (see “USB Firmware Stack Configuration”), which must be
defined to equal the actual name. The function will be called to look up the appropriate endpoint configuration during
device enumeration. It must provide a pointer to the endpoint configuration table and the number of entries in the
table.

Syntax
const EP_CONFIG * USB_DEV GET EP CONFIG TABLE FUNC (int *length)
Where USB_DEV_GET_EP CONFIG TABLE_ FUNC is an application-defined function name.

Parameters

length — A pointer to the integer variable to receive the number of entries in the endpoint configuration table.

Return Values

This routine must return a pointer to the first element in the endpoint configuration table.

Preconditions
USBInitialize must have been called and returned a success indication.

Side Effects
None

Example

// This is a sample implementation. This routine is not called by the appplication.
const EP_CONFIG *USBDEVGetEpConfigurationTable (int *num_entries)
{

// Provide the number of entries

*num_entries = sizeof(ngConfigTable)/sizeof(EP_CONFIG);

// Provide the table pointer.
return gEpConfigTable;

© 2008 Microchip Technology Inc. DS01176A-page 27

AN1176

USB API - USB DEV_GET FUNCTION DRIVER TABLE FUNC

This routine is a “call out” from the USB firmware stack that must be implemented by the application. The actual
name is defined by the application. The USB firmware will «call it using the
USB_DEV_GET FUNCTION DRIVER TABLE FUNC macro (see “USB Firmware Stack Configuration”), which
must be defined to equal the actual name. The function will be called to access the function-driver table when the
device is configured by the host.

Syntax
const FUNC_DRV * USB_DEV_GET FUNCTION_ DRIVER TABLE_FUNC (void)
Where USB_DEV_GET FUNCTION DRIVER TABLE FUNC is an application-defined function name

Parameters

None

Return Values

This routine must return a pointer to the first element in the function-driver table.

Preconditions

USBInitialize must have been called and returned a success indication.

Side Effects
None

Example

// This is a sample implementation. The function is not called by the application.
const FUNC DRV *USBDEVGetFunctionDriverTable (void)
{

// Index into the array and provide the interface pointer.

return gDevFuncTable;

DS01176A-page 28 © 2008 Microchip Technology Inc.

AN1176

APPENDIX C: USB FUNCTION
DRIVER INTERFACE

This section describes class-or-vendor-specific Func-
tion Driver Interface (FDI) to the USB firmware stack.
The FDI provides a way for one or more class-specific
USB “functions” to communicate with the host. This
includes initializing the function when appropriate, pro-
viding data transfer capabilities and providing a way to
receive events.

Since the function is not initialized until the host selects
the device configuration and since USB events are by
nature asynchronous, some of the FDI functions are
“callouts” from the USB Firmware stack. Others are
calls into the USB Firmware stack. Table 6 summarizes
the FDI and identifies which calls are into and which are
out of the USB stack.

TABLE 6: USB DEVICE LAYER INTERFACE SUMMARY

table.)

(This routine is called through a pointer in the function-driver

. Call i
Operation Type Description
USBDEVTransferData IN Starts a data transfer (transmit or receive).
USBDEVGetLastError IN |Provides information about bus errors.
<Func-Driver Initialization Routine> ouT |Implemented by function driver(s). Called by
(This routine is called through a pointer in the function-driver the device layer when the device is config-
table.) ured with the function..
<Func-Event Handling Routine> ouT |Implemented by function driver(s). Handles

all function-specific bus events and class or
vendor requests.

Detailed descriptions of the USB FDI routines follow.

© 2008 Microchip Technology Inc.

DS01176A-page 29

AN1176

USB FDI - USBDEVTransferData

This routine initiates a data transfer on the USB from the given endpoint in a given direction. The caller provides
the buffer from which to transfer the data for transmission or in which to place the data when receiving.
Syntax

BOOL USBDEVTransferData (TRANSFER FLAGS flags, void *buffer, unsigned int size)

Parameters

flags — Used to indicate both endpoint and direction.

buf fer — Pointer to the buffer from/to which the data will be transferred.
size — Number of bytes of data to transfer.

Return Values
TRUE if the data transfer was successfully started,
FALSE if not.

Preconditions
USBiInitialize must have been called successfully and the system must have been connected to a host on the USB.

Side Effects

A USB data transfer has been prepared. The actual transfer of the data will occur under control of the USB controller
via DMA later when requested by the host. An EVENT TRANSFER event will be sent to the function driver’s
<Func-Event Handling Routine> routine when the transfer has completed.

Example

switch (bRequest)
{
case SET_LINE_ CODING:
// Start an Rx transaction on EPO to get the line coding.
gCdcSer.flags |= CDC_FLAGS_LINE_CTRL_BUSY;
return USBDEVTransferData (XFLAGS (USB_EPO|USB_RECEIVE), &line coding, sizeof(line coding));

// Handle other requests
}

DS01176A-page 30 © 2008 Microchip Technology Inc.

AN1176

USB FDI - USBDEVGetLastError

This routine provides a bit mapped representation of the most recent error conditions.

Syntax
unsigned long USBDEVGetLastError (void)

Parameters
None

Return Values

A bit mapped* representation of the most recent error conditions:

USBDEV_PID ERR Indicates an error in the packet ID field of a packet.

USBDEV_CRC16 Indicates that there was a CRC error in a data packet.

USBDEV_DFN8§ Indicates that the data field size of a data packet was not an integer multiple of 8 bits.

USBDEV_BTO_ERR Indicates a bus turn-around time-out error has occurred.

USBDEV_DMA ERR Indicates that the DMA engine was unable to read/write memory.

USBDEV_BTS_ERR Indicates a bit-stuffing error.

USBDEV_XFER_ID Indicates that the HAL was unable to identify the given transfer EP.

USBDEV_NO_EP Indicates that an invalid endpoint number was given.

USBDEV_DMA ERR2 Indicates that there was an error trying to start a DMA transaction during transfer
processing.

* Values may be ORd together if more then one error has occurred since last call to USBDEVGetLastError.

Preconditions

USBInitialize must have been called successfully.

Side Effects

The internal record of the error has been cleared. However, nothing has been done to fix the error condition. The
Caller may need to take appropriate steps.

Example

switch (event)

{

case EVT_BUS_ERR:
error = USBDEVGetLastError();
HandleBusError (error);// Routine to check for each error and handle it appropriately.
break;

// Handle other events...

}

© 2008 Microchip Technology Inc. DS01176A-page 31

AN1176

USB FDI - <Func-Driver Init Routine>

This routine is a “call out” from the USB firmware and must be implemented by the USB peripheral device function
driver. The actual name is defined by the driver. The USB firmware will call it using a pointer, in the function driver
table. The routine must perform basic initialization of the function driver that implements it. The USB Firmware will
call it when the host sets the configuration, before sending any events to the function driver.

Syntax

BOOL <Func-Driver Init Routine> (unsigned long flags)

Where <Func-Driver Table Routine> is a driver-defined function name

Parameters

flags — Function-driver initialization flags (driver specific).

Return Values
TRUE if successful,
FALSE if not

Preconditions

USBInitialize must have been called and returned a success indication.

Side Effects

Side effects are dependent on the function driver that implements the routine. However, in all cases the driver must
be initialized and ready to receive class and/or vendor specific events.

Example

// This is a sample implementation. The function is not called by the application.
BOOL USBUARTInit (unsigned long flags)
{

memset (&gCdcSer, 0, sizeof (gCdcSer));

// Initialize an state necessary

gCdcSer.flags = flags & CDC_FLAGS_INIT_MASK;

// Perform other initialization as necessary

return TRUE;

// Sample Function Driver Table Entry:

// USB CDC Serial Emulation Function Driver
{
USBUARTInit,// Init routine
USBUARTEventHandler, // Event routine
0 // Init flags
}, // Additional entries may follow.

DS01176A-page 32 © 2008 Microchip Technology Inc.

AN1176

USB FDI - <Func-Driver Event Handling Routine>

This routine is a “call out” from the USB firmware and must be implemented by the USB peripheral device function
driver. The actual name is defined by the driver. The USB firmware will call using a pointer, placed in the function
driver table.

Syntax

BOOL <Func-Driver Event Handling Routine> (USB_EVENT event, void *data, int size)

Where < Func-Driver Event Handling Routine > is a driver-defined function name

Parameters

event — Enumerated data type identifying the event that has occurred (see “Predefined Events:”)
data — A pointer to event-dependent data (if available, see “Predefined Events:”)

size — The size of the event-dependent data, in bytes.

Return Values
TRUE if successful,
FALSE if not (or if not finished handling the event)

Preconditions

USBInitialize must have been called and returned a success indication.

Side Effects

Side effects are dependent on the function driver that implements the routine. However, in all cases the driver must
handle the event appropriately and prepare for the next event expected to occur (such as starting a new data
transfer if appropriate).

Example

Refer to “Event Handling” for an example of how to implement this function.

Predefined Events:
EVENT NONE False event trigger (should never happen).
EVENT TRANSFER A previous USB transfer has completed. This event provides a pointer to the following data:

typedef struct transfer event data

{

UINT32 size; // Actual number of bytes transferred
USB_XFER DIR direction; // Direction of endpoint
BYTE ep_num; // Endpoint Number

} USB TRANSFER EVENT DATA;
EVENT SOF A start of frame has occurred.
EVENT RESUME A resume signal has been received on the bus.
EVENT SUSPEND A suspend signal (3 ms idle) has occurred on the bus.
EVENT RESET A Reset signal has been received on the bus.
EVENT DETACH The USB cable has been detached.
EVENT ATTACH A USB cable has been attached.

EVENT STALL A stall has occurred on one or more endpoints. This event provides a pointer to a 16-bit word
providing a bitmap of which endpoints have stalled (bit 0 = EPO stalled, bit 1 = EP1 stalled, etc.).

EVENT_ SETUP A device or function-specific setup packet has been received. This event provides a pointer to
the setup packet data:

typedef struct SetupPkt
{

union // offset description
{ A
BYTE bmRequestType; // 0 Bit-map of request type

© 2008 Microchip Technology Inc. DS01176A-page 33

AN1176

struct

{
BYTE recipient:
BYTE type:
BYTE direction:

}i
}requestInfo;
BYTE bRequest;
UINT16 wValue;
UINT16 wIndex;
UINT1l6 wLength;

} SETUP_PKT;

//
//
//
//

o BN

Recipient of the request
Type of request
Direction of data X-fer

Request type

Depends on bRequest
Depends on bRequest
Depends on bRequest

EVENT USER_BASEThis is the first event available for application definition. Add integer values to this base to define

application-specific events.

EVENT BUS ERRORAN error has occurred on the bus. Call usBHALGetLastError () to identify it and clear the

error-record.

DS01176A-page 34

© 2008 Microchip Technology Inc.

AN1176

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company'’s customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

APPENDIX D: SOURCE CODE
FOR THE USB
DEVICE STACK
PROGRAMMER'’S
GUIDE

The source code for the Microchip USB device stack
firmware is offered under a no-cost license agreement.
It is available for download as a single archive file from
the Microchip corporate web site, at:

www.microchip.com.

After downloading the archive, check the release notes
for the current revision level and a history of changes to
the software.

© 2008 Microchip Technology Inc. DS01176A-page 35

AN1176

REVISION HISTORY

Rev. A Document (02/2008)

This is the initial released version of this document.

DS01176A-page 36 © 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—150/TS 16949:2002 =

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KeeLoq, KeeLoa logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC3? logo, PowerCal, Powerlinfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A,, All Rights Reserved.

f‘} Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

© 2008 Microchip Technology Inc.

DS01176A-page 37

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, Ml
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

01/02/08

DS01176A-page 38

© 2008 Microchip Technology Inc.

	Introduction
	Assumptions
	Features
	Limitations
	System Hardware
	PIC® MCU Memory Resource Requirements
	PIC® MCU Hardware Resource Requirements
	TABLE 1: PIC® MCU I/O Pin Usage

	Installing Source Files
	Source File Organization
	TABLE 2: Source Files

	Demo Application
	Stack Architecture
	FIGURE 1: Conceptual Stack

	Creating a USB Application
	EXAMPLE 1: Main Application Logic
	EXAMPLE 2: Initialization Routine
	EXAMPLE 3: Event-Handling Routine
	FIGURE 2: Endpoint Configuration and Function Driver Tables
	EXAMPLE 4: Descriptor Table Definition
	EXAMPLE 5: Descriptor Table Initialization
	EXAMPLE 6: Get Descriptor Routine and Support Code
	FIGURE 3: Endpoint Configuration Table Structure
	TABLE 3: Endpoint Configuration Flags
	TABLE 4: Data Flow Direction Summary for a Peripheral Device
	EXAMPLE 7: Simple Endpoint Configuration Table
	EXAMPLE 8: Complex Endpoint configuration Table
	FIGURE 4: Function Driver Table Entry
	EXAMPLE 9: Function Driver Table
	EXAMPLE 10: Get Function Driver Table Routine
	EXAMPLE 11: Function Identification Macro Definitions

	Conclusion
	References
	Appendix A: USB Firmware Stack Configuration
	Appendix B: Application Programming Interface
	TABLE 5: USB API Summary

	Appendix C: USB Function Driver Interface
	TABLE 6: USB Device Layer Interface Summary

	Appendix D: Source Code for the USB Device Stack Programmer’s Guide
	Revision History
	USB Device Stack for PIC32 Programmer’s Guide
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /3Of9Barcode
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /Arnprior
 /Batang
 /Baveuse
 /Berylium
 /Berylium-BoldItalic
 /BlueHighway
 /BlueHighway-Bold
 /BlueHighwayCondensed
 /BlueHighwayDType
 /BlueHighwayLinocut
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BurnstownDam
 /CarbonBlock
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CreditValley
 /CreditValley-Bold
 /CreditValley-BoldItalic
 /CreditValley-Italic
 /DSPIC
 /EarwigFactory
 /EstrangeloEdessa
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HurryUp
 /Impact
 /INCONTROL
 /Kartika
 /Kredit
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /Map-Symbols
 /MICROCHIP
 /MicrosoftSansSerif
 /MinyaNouvelle
 /MinyaNouvelleBold
 /MinyaNouvelleBoldItalic
 /MinyaNouvelleItalic
 /MonotypeCorsiva
 /MonotypeSorts
 /MS-Mincho
 /MT-Extra
 /MVBoli
 /Neuropol
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PlanetBenson2
 /Pupcat
 /Raavi
 /Shruti
 /SimSun
 /Stereofidelic
 /SybilGreen
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Teen
 /Teen-Bold
 /Teen-BoldItalic
 /Teen-Italic
 /TeenLight
 /TeenLight-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /VelvendaCooler
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Waker
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

